

CERTIFICATE OF ANALYSIS

Prepared for: RDY Manufacturing 102 Greystone Power Blvd Dallas, GA 30157

Natural 2000 mg

Batch ID:

Not Provided

Test ID:

CANN_54

Reported:

01-Apr-2021

Method:

HPLC/UV

Type:

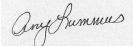
Concentrate

Test:

Potency

Analytes and Results: Cannabinoids

Analyze Name	LOD (%)	LOQ (%)	Result (%)	Result (mg/g)
Delta 9-Tetrahydrocannabinolic acid (THC-A)	0.010	0.015	ND	ND
Delta 9-Tetrahydrocannabinol (Delta 9THC)	0.010	0.015	0.030	0.300
Cannabidolic acid (CBDA)	0.010	0.015	ND	ND
Cannabidiol (CBD)	0.010	0.015	1.844	18.44
Delta 8-Tetrahydrocannabinol (Delta 8THC)	0.010	0.015	ND	ND
Cannabinolic acid (CBNA)	0.010	0.015	ND	ND
Cannabinol (CBN)	0.010	0.015	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cannabigerolic acid (CBGA)	0.010	0.015	ND	ND
Cannabigerol (CBG)	0.010	0.015	ND	ND
Cannabichromenic acid (CBCA)	0.010	0.015	ND	ND
Cannabichromene (CBC)	0.010	0.015	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Tetrahydrocannabivarin (THCV)	0.010	0.015	ND	ND
Cannabidivarinic acid (CBDVA)	0.010	0.015	ND	ND
Cannabidivarin (CBDV)	0.010	0.015	ND	ND
Total Cannabinoids			1.874	18.74
Total Potential THC**			0.030	0.300
Total Potential CBD**			1.844	18.440


1.874 %
Total Cannabinoids*

0.030%
Total
THC**

Total THC= THC + (THCa*(0.877)) and Total CBD =. CBD + (CBDa*(0.877))

%=%(w/w) = Percent (Weight of Analyte/Weight of Product)

FINAL APPROVAL

CEO Reported on: 01-Apr-21

APPROVED BY /DATE

Testing results are based solely on the sample provided to ZOSI Analytical, LLC, in the condition it was received. ZOSI Analytical, LLC warrants all analytical work is conducted professionally in accordance with all applicable laboratory practices. Data was generated at an approved, ISO-accredited partner lab. This report may not be reproduced, except in full, without the written approval of ZOSI Analytical, LLC. ISO 17025:2017 PJLA Certificate Number L20-574.

^{*}Total Cannabinoids result reflects the absolute sum of all cannabinoids detected.

^{**} Total Potential THC/CBD is calculated using the following formulas to take into account the loss of a carboxyl group during decarboxylation step.